
CS267 L19 Dense Linear Algebra I.1 Demmel Sp 1999

CS 267 Applications of Parallel Computers

Lecture 17:

Dense Linear Algebra - I

James Demmel

http://www.nersc.gov/~dhbailey/cs267/Lectures/

Lect_17_2000.ppt

CS267 L19 Dense Linear Algebra I.2 Demmel Sp 1999

Outline

° Motivation for Dense Linear Algebra (Lectures 10-11)
• Ax=b: Computational Electromagnetics

• Ax = λλλλx: Quantum Chemistry

° Review Gaussian Elimination (GE) for solving Ax=b

° Optimizing GE for caches on sequential machines
• using matrix-matrix multiplication (BLAS)

° LAPACK library overview and performance

° Data layouts on parallel machines

° Parallel matrix-matrix multiplication

° Parallel Gaussian Elimination

° ScaLAPACK library overview

° Eigenvalue problems

° Open Problems

CS267 L19 Dense Linear Algebra I.3 Demmel Sp 1999

Computational Electromagnetics

•Developed during 1980s, driven by defense
applications

•Determine the RCS (radar cross section) of
airplane

•Reduce signature of plane (stealth technology)

•Other applications are antenna design, medical
equipment

•Two fundamental numerical approaches:

•MOM methods of moments (frequency
domain)

•Large dense matrices

•Finite differences (time domain)
•Even larger sparse matrices

CS267 L19 Dense Linear Algebra I.4 Demmel Sp 1999

Computational Electromagnetics

image: NW Univ. Comp. Electromagnetics Laboratory http://nueml.ece.nwu.edu/

- Discretize surface into triangular facets using
standard modeling tools

- Amplitude of currents on surface are
unknowns

- Integral equation is discretized into a set of linear
equations

CS267 L19 Dense Linear Algebra I.5 Demmel Sp 1999

Computational Electromagnetics (MOM)

After discretization the integral equation has the
form

 A x = b
 where

A is the (dense) impedance matrix,

x is the unknown vector of amplitudes, and

b is the excitation vector.

(see Cwik, Patterson, and Scott, Electromagnetic Scattering on the Intel Touchstone
Delta, IEEE Supercomputing ‘92, pp 538 - 542)

CS267 L19 Dense Linear Algebra I.6 Demmel Sp 1999

The main steps in the solution process are

 Fill: computing the matrix elements of A

 Factor: factoring the dense matrix A

 Solve: solving for one or more excitations b

 Field Calc: computing the fields scattered from the obje

Computational Electromagnetics (MOM)

CS267 L19 Dense Linear Algebra I.7 Demmel Sp 1999

Analysis of MOM for Parallel Implementation

Task Work Parallelism Parallel Speed

Fill O(n**2) embarrassing low

Factor O(n**3) moderately diff. very high

Solve O(n**2) moderately diff. high

Field Calc. O(n) embarrassing high

CS267 L19 Dense Linear Algebra I.8 Demmel Sp 1999

Results for Parallel Implementation on Delta

Task Time (hours)

Fill 9.20

Factor 8.25

Solve 2 .17

Field Calc. 0.12

The problem solved was for a matrix of size
48,672. (The world record in 1991.)

CS267 L19 Dense Linear Algebra I.9 Demmel Sp 1999

Current Records for Solving Dense Systems

Year System Size Machine # Procs Gf

1950's O(100)
1995 128,600 Intel Paragon 6768
1996 215,000 Intel ASCI Red 7264
1998 148,000 Cray T3E 1488
1998 235,000 Intel ASCI Red 9152
 (200 MHz Ppro)

1999 374,000 SGI ASCI Blue 5040
2000 362,000 Intel ASCI Red 9632
 (333 MHz Xeon)

source: Alan Edelman http://www-math.mit.edu/~edelman/records.html
 LINPACK Benchmark: http://www.netlib.org/performance/html/PDSreports.html

www.netlib.org, click on Performance DataBase Server

CS267 L19 Dense Linear Algebra I.10 Demmel Sp 1999

Computational Chemistry

° Seek energy levels of a molecule, crystal, etc.
• Solve Schroedinger’s Equation for energy levels = eigenvalues

• Discretize to get Ax = λλλλBx, solve for eigenvalues λλλλ and eigenvectors x

• A and B large, symmetric or Hermitian matrices (B positive definite)

• May want some or all eigenvalues/eigenvectors

° MP-Quest (Sandia NL)
• Si and sapphire crystals of up to 3072 atoms

• Local Density Approximation to Schroedinger Equation

• A and B up to n=40000, complex Hermitian

• Need all eigenvalues and eigenvectors

• Need to iterate up to 20 times (for self-consistency)

° Implemented on Intel ASCI Red
• 9200 Pentium Pro 200 processors (4600 Duals, a CLUMP)

• Overall application ran at 605 Gflops (out of 1800 Glops peak),

• Eigensolver ran at 684 Gflops

• www.cs.berkeley.edu/~stanley/gbell/index.html

• Runner-up for Gordon Bell Prize at Supercomputing 98

° Same problem arises in astrophysics...

CS267 L19 Dense Linear Algebra I.11 Demmel Sp 1999

Review of Gaussian Elimination (GE) for solving Ax=b

° Add multiples of each row to later rows to make A upper
triangular

° Solve resulting triangular system Ux = c by substitution

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 … for each row j below row i
 for j = i+1 to n
 … add a multiple of row i to row j
 for k = i to n
 A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k)

CS267 L19 Dense Linear Algebra I.12 Demmel Sp 1999

Refine GE Algorithm (1)

° Initial Version

° Remove computation of constant A(j,i)/A(i,i) from
inner loop

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 … for each row j below row i
 for j = i+1 to n
 … add a multiple of row i to row j
 for k = i to n
 A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

CS267 L19 Dense Linear Algebra I.13 Demmel Sp 1999

Refine GE Algorithm (2)

° Last version

° Don’t compute what we already know:
zeros below diagonal in column i

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

CS267 L19 Dense Linear Algebra I.14 Demmel Sp 1999

Refine GE Algorithm (3)

° Last version

° Store multipliers m below diagonal in zeroed entries
for later use

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

CS267 L19 Dense Linear Algebra I.15 Demmel Sp 1999

Refine GE Algorithm (4)

° Last version

° Express using matrix operations (BLAS)

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n)
 - A(i+1:n , i) * A(i , i+1:n)

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

CS267 L19 Dense Linear Algebra I.16 Demmel Sp 1999

What GE really computes

° Call the strictly lower triangular matrix of multipliers
M, and let L = I+M

° Call the upper triangle of the final matrix U

° Lemma (LU Factorization): If the above algorithm
terminates (does not divide by zero) then A = L*U

° Solving A*x=b using GE
• Factorize A = L*U using GE (cost = 2/3 n3 flops)

• Solve L*y = b for y, using substitution (cost = n2 flops)

• Solve U*x = y for x, using substitution (cost = n2 flops)

° Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

CS267 L19 Dense Linear Algebra I.17 Demmel Sp 1999

Problems with basic GE algorithm

° What if some A(i,i) is zero? Or very small?
• Result may not exist, or be “unstable”, so need to pivot

° Current computation all BLAS 1 or BLAS 2, but we know that
BLAS 3 (matrix multiply) is fastest (Lecture 2)

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)
 - A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2

BLAS 1

CS267 L19 Dense Linear Algebra I.18 Demmel Sp 1999

Pivoting in Gaussian Elimination

° A = [0 1] fails completely, even though A is “easy”
 [1 0]

° Illustrate problems in 3-decimal digit arithmetic:

 A = [1e-4 1] and b = [1], correct answer to 3 places is x = [1]
 [1 1] [2] [1]

° Result of LU decomposition is

 L = [1 0] = [1 0] … No roundoff error yet
 [fl(1/1e-4) 1] [1e4 1]

 U = [1e-4 1] = [1e-4 1] … Error in 4th decimal place
 [0 fl(1-1e4*1)] [0 -1e4]

 Check if A = L*U = [1e-4 1] … (2,2) entry entirely wrong
 [1 0]

° Algorithm “forgets” (2,2) entry, gets same L and U for all |A(2,2)|<5
° Numerical instability
° Computed solution x totally inaccurate

° Cure: Pivot (swap rows of A) so entries of L and U bounded

CS267 L19 Dense Linear Algebra I.19 Demmel Sp 1999

Gaussian Elimination with Partial Pivoting (GEPP)
° Partial Pivoting: swap rows so that each multiplier
 |L(i,j)| = |A(j,i)/A(i,i)| <= 1

for i = 1 to n-1
 find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|
 … i.e. largest entry in rest of column i
 if |A(k,i)| = 0
 exit with a warning that A is singular, or nearly so
 elseif k != i
 swap rows i and k of A
 end if
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … each quotient lies in [-1,1]
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

° Lemma: This algorithm computes A = P*L*U, where P is a
 permutation matrix
° Since each entry of |L(i,j)| <= 1, this algorithm is considered
 numerically stable
° For details see LAPACK code at www.netlib.org/lapack/single/sgetf2.f

CS267 L19 Dense Linear Algebra I.20 Demmel Sp 1999

Converting BLAS2 to BLAS3 in GEPP

° Blocking
• Used to optimize matrix-multiplication

• Harder here because of data dependencies in GEPP

° Delayed Updates
• Save updates to “trailing matrix” from several consecutive BLAS2

updates

• Apply many saved updates simultaneously in one BLAS3
operation

° Same idea works for much of dense linear algebra
• Open questions remain

° Need to choose a block size b
• Algorithm will save and apply b updates

• b must be small enough so that active submatrix consisting of b
columns of A fits in cache

• b must be large enough to make BLAS3 fast

CS267 L19 Dense Linear Algebra I.21 Demmel Sp 1999

Blocked GEPP (www.netlib.org/lapack/single/sgetrf.f)

for ib = 1 to n-1 step b … Process matrix b columns at a time
 end = ib + b-1 … Point to end of block of b columns
 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’
 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)
 - A(end+1:n , ib:end) * A(ib:end , end+1:n)
 … apply delayed updates with single matrix-multiply
 … with inner dimension b

(For a correctness proof,
 see on-lines notes.)

CS267 L19 Dense Linear Algebra I.22 Demmel Sp 1999

Efficiency of Blocked GEPP

CS267 L19 Dense Linear Algebra I.23 Demmel Sp 1999

Overview of LAPACK

° Standard library for dense/banded linear algebra
• Linear systems: A*x=b

• Least squares problems: minx || A*x-b ||2
• Eigenvalue problems: Ax = λ λ λ λx, Ax = λλλλBx

• Singular value decomposition (SVD): A = UΣΣΣΣVT

° Algorithms reorganized to use BLAS3 as much as
possible

° Basis of math libraries on many computers, Matlab 6

° Many algorithmic innovations remain
• Projects available

• Automatic optimization

• Quadtree matrix data structures for locality

• New eigenvalue algorithms

° Next release planned Summer 2000

CS267 L19 Dense Linear Algebra I.24 Demmel Sp 1999

Performance of LAPACK (n=1000)

CS267 L19 Dense Linear Algebra I.25 Demmel Sp 1999

Performance of LAPACK (n=100)

CS267 L19 Dense Linear Algebra I.26 Demmel Sp 1999

Parallelizing Gaussian Elimination

° Recall parallelization steps from Lecture 3
• Decomposition: identify enough parallel work, but not too much

• Assignment: load balance work among threads

• Orchestrate: communication and synchronization

• Mapping: which processors execute which threads

° Decomposition
• In BLAS 2 algorithm nearly each flop in inner loop can be done in

parallel, so with n2 processors, need 3n parallel steps

• This is too fine-grained, prefer calls to local matmuls instead

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)
 - A(i+1:n , i) * A(i , i+1:n)

CS267 L19 Dense Linear Algebra I.27 Demmel Sp 1999

Assignment of parallel work in GE

° Think of assigning submatrices to threads, where
each thread responsible for updating submatrix it
owns

• “owner computes” rule natural because of locality

° What should submatrices look like to achieve load
balance?

CS267 L19 Dense Linear Algebra I.28 Demmel Sp 1999

Different Data Layouts for Parallel GE (on 4 procs)

 The winner!

Bad load balance:
P0 idle after first
n/4 steps

Load balanced, but can’t easily
use BLAS2 or BLAS3

Can trade load balance
and BLAS2/3
performance by
choosing b, but
factorization of block
column is a bottleneck

Complicated addressing

